Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.
(1) Let Ω be an open subset of \mathbb{R}^d and let $C(\Omega) = \{ f : \Omega \to \mathbb{R} \mid f \text{ is continuous} \}$ with the norm,
$$\|f\|_{C(\Omega)} = \sup_{x \in \Omega} |f(x)|.$$
Prove that $C(\Omega)$ is a Banach space.

(2) Let Ω be a bounded domain in \mathbb{R}^2, $d \geq 1$, with smooth boundary.
(a) Use the divergence theorem to derive Green’s identity,
$$\int_{\Omega} \Delta u v = -\int_{\Omega} \nabla u \cdot \nabla v + \int_{\partial \Omega} (\nabla u \cdot \mathbf{n}) v,$$
where u and v are smooth scalar-valued functions on Ω, and \mathbf{n} is the outward unit normal vector.
(b) Consider the Cauchy problem,
$$\begin{cases}
\partial_t u = \Delta u + cu & \text{for } (t, x) \in (0, \infty) \times \Omega, \\
u(t, x) = 0 & \text{for } (t, x) \in (0, \infty) \times \partial \Omega, \\
u(0, x) = g(x) & \text{for } x \in \Omega,
\end{cases}$$
on a bounded domain $\Omega \subseteq \mathbb{R}^d$ having a smooth boundary. Here, c is a positive constant. Suppose u_1 and u_2 are two smooth solutions of the above Cauchy problem with different initial conditions g_1 and g_2. Show that if g_1 and g_2 are “close” in $L^2(\Omega)$ then the solutions u_1 and u_2 are also close in $L^2(\Omega)$ at any later time $t > 0$. Derive an estimate of how close. (Green’s identity and Gronwall’s inequality will be useful here.)

(3) Let $A(t)$ be a continuous function from t in \mathbb{R} to the space of square, real-valued matrices.
(a) Show that for every solution of the (non-autonomous) linear system, $\dot{x} = A(t)x$, we have
$$\|x(t)\| \leq \|x(0)\| e^{\int_0^t \|A(s)\| \, ds},$$
where $\|A(s)\|$ is the operator norm and $\|x(t)\|$ is the usual Euclidean norm.
(b) Show that if $\int_0^t \|A(s)\| \, ds < \infty$ then every solution, $x(t)$, has a finite limit as $t \to \infty$.

Part 1
PART 2

(1) (a) Find the entropy solution to the Burgers’ equation \(u_t + uu_x = 0 \) with the initial datum

\[
g(x) = \begin{cases}
1 & \text{if } x \leq 0, \\
1 - x & \text{if } 0 \leq x \leq 1, \\
0 & \text{if } x \geq 1.
\end{cases}
\]

(b) Consider the Burgers’ equation with source term 1 with the initial datum \(x \):

\[
u_t + uu_x = 1, \quad u(t = 0) = x.
\]

Find the equation for the characteristics and also find an explicit formula for the solution of this initial value problem.

(2) Let \(f \in C^2_c(\mathbb{R}^3) \) be given. Define for \(x \in \mathbb{R}^3 \)

\[
u(x) = \int_{\mathbb{R}^3} \Phi(x - y)f(y)dy
\]

where \(\Phi(x) = \frac{1}{4\pi|x|} \). Prove that \(-\Delta u = f\) in \(\mathbb{R}^3 \). You can use the fact \(u \in C^2(\mathbb{R}^3) \) without a proof.

(3) Let \(u \) be a classical solution of the following initial boundary value problem:

\[
u_t = u_{xx}, \quad \text{in } (a, b) \times (0, T)
\]

\[
u(a, t) = \nu(b, t) = 0
\]

\[
u(x, 0) = \nu_0(x)
\]

where \(\nu_0 \) is a continuous function.

(a) Show that the solutions are unique.

(b) Show that there exists a constant \(\alpha > 0 \) such that

\[
\|\nu(\cdot, t)\|_{L^2}^2 \leq e^{-\alpha t}\|\nu_0\|_{L^2}^2.
\]
PART 3

(1) Let U be the open unit ball in \mathbb{R}^d.

(a) Let $u(x) = |x|^{-\alpha}$.

For which values of $\alpha > 0$, $d \geq 1$, and $p > 1$ does u belong to $W^{1,p}(U)$?

(b) Show that $u(x) = \log \log \left(1 + |x|^{-1}\right)$

belongs to $W^{1,2}(U)$ but does not belong to $L^\infty(U)$.

(2) Let $U = (0,1)^2$, the unit square in \mathbb{R}^2. Can the Lax-Milgram theorem be applied to the bilinear form, $B[u, v] : H^1_0(U) \times H^1_0(U) \to \mathbb{R}$, defined by

$$B[u, v] = \int_0^1 \int_0^1 \frac{\partial u}{\partial x_2} \frac{\partial v}{\partial x_2} - \frac{\partial u}{\partial x_1} \frac{\partial v}{\partial x_1} \, dx_1 \, dx_2.$$

(3) Suppose $u \in C^2(U) \cap C(\overline{U})$ and let

$$Lu = \sum_{i,j=1}^n a^{ij} u_{x_i x_j},$$

where the coefficient, a^{ij}, are continuous and satisfy the uniform ellipticity condition. Prove the weak maximum principle; namely, that if $Lu \leq 0$ then

$$\max_{\overline{U}} u = \max_{\partial U} u.$$
Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Part 1

(1) A fundamental solution to the autonomous linear system, \(\dot{x} = Ax \), is a nonsingular matrix-valued function, \(\Phi: \mathbb{R} \rightarrow M^{d \times d} \), with \(\Phi'(t) = A\Phi(t) \).

(a) Show that \(\Psi(t) = e^{At} \) is a fundamental solution satisfying \(\Psi(0) = I \), the identity matrix. (You may use standard facts about \(e^{At} \) without proof.)

(b) Show that \(x(t) = \Phi(t)\Phi(0)^{-1}x_0 \) is a solution to the IVP, \(\dot{x} = Ax, \ x(0) = x_0 \).

(c) Show that any fundamental solution is of the form, \(\Phi(t) = e^{At}M \), for some non-singular matrix \(M \).

(d) Consider the nonhomogeneous linear system, \(\dot{x} = Ax + b(t) \),

where \(b \) is continuous in time. (So \(b \) can vary with time, but \(A \) cannot.) Show that

\[
x(t) = \Phi(t)\Phi(0)^{-1}x_0 + \int_{0}^{t} \Phi(t)\Phi^{-1}(s)b(s)\,ds
\]

is a solution to the IVP, \(\dot{x} = Ax + b(t), \ x(0) = x_0 \).
(2) (a) Consider the linear system of ODEs,
\[\dot{y}_1 = -y_1, \quad \dot{y}_2 = 2y_2, \]
which has the origin as the only equilibrium point. Determine the explicit solution to this system given the initial condition, \(y(0) = a = (a_1, a_2) \). What are the stable and unstable manifolds for this system? (One or both might be empty.)

(b) Now consider the perturbed, nonlinear system,
\[\dot{x}_1 = -x_1, \quad \dot{x}_2 = 2x_2 - 5\epsilon x_1^3, \]
which also has the origin as the only equilibrium point. Determine the explicit solution to this system given the initial condition, \(x(0) = a = (a_1, a_2) \). (One method: let \(y_1, y_2 \) be the solution to the linear system in (a) with initial condition, \((y_1, y_2) = (1, 1) \), assume that \(x_2 = c_1 y_2 + c_2 y_1^3 \), and then determine \(c_1 \) and \(c_2 \).)

(c) What is the stable manifold for the system in (b)?

(3) Consider the system of equations,
\[\begin{cases} \dot{x}_1 = x_2 - x_1 f(x_1, x_2), \\ \dot{x}_2 = -x_1 - x_2 f(x_1, x_2), \end{cases} \]
where \(f \) lies in \(C^1(\mathbb{R}^2) \).

(a) Show that if \(f \) is positive in some neighborhood of the origin then the origin is an asymptotically stable equilibrium point.

(b) Show that if \(f \) is negative in some neighborhood of the origin then the origin is an unstable equilibrium point.

Hint for both parts: Construct a Lyapunov function.
PART 2

(1) Let \(g \) be a bounded, continuous function on \(\mathbb{R}^n \). For \((x,t) \in \mathbb{R}^n \times (0, +\infty)\) define

\[
 u(x,t) = \int_{\mathbb{R}^n} \Phi(x-y, t) g(y) dy,
\]

where \(\Phi \) is the fundamental solution of the heat equation,

\[
 \Phi(x, t) = \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x|^2}{4t}}.
\]

Let \(x_0 \in \mathbb{R}^n \). Prove that

\[
 \lim_{(x,t) \to (x_0, 0)} u(x, t) = g(x_0).
\]

Hint: You can use the fact that \(\int_{\mathbb{R}^n} \Phi(x, t) dx = 1 \) for every \(t > 0 \) without proving it. You can also use without proving it the fact that for every \(r_0 > 0 \),

\[
 \lim_{(x,t) \to (x_0, 0)} \int_{|y-x_0| > r_0} \Phi(x-y, t) dy = 0.
\]

In other words, \(\Phi(\cdot, t) \) has mass one and as \((x, t) \to (x_0, 0) \) all the mass concentrate around the the point \(x_0 \).

(2) Let \(\Omega \subset \mathbb{R}^n \) be a bounded open domain with smooth boundary and define the energy

\[
 E(w) = \frac{1}{2} \int_{\Omega} |\nabla w|^2 dx - \int_{\partial \Omega} hw,
\]

where \(h \) is a smooth function defined on the boundary of \(\Omega \). Suppose \(u \in C^2(\overline{\Omega}) \) satisfies

\[
 E(u) \leq E(w) \text{ for all } w \in C^2(\overline{\Omega}).
\]

What PDE is \(u \) satisfying? What are the boundary conditions? Prove it.

Hint: Start by considering perturbation \(u + \epsilon v \) where \(v \in C^2(\Omega) \). This will give you the PDE. Then consider perturbation \(u + \epsilon v \) where \(v \in C^2(\Omega) \) to get the boundary condition.

(3) Let \(u \) and \(v \) belong to \(C^2(U_T) \cap C(\overline{U_T}) \) and satisfy

\[
 u_t = \Delta u + f, \\
 v_t = \Delta v + g.
\]

Show that if \(u \geq v \) on the parabolic boundary \(\Gamma_T \) and \(f \geq g \) in \(U_T \) then \(u \geq v \) in all of \(\overline{U_T} \). This is called a comparison principle.
Part 3

(1) (a) Prove or disprove the following:

Let U be a bounded, open subset of \mathbb{R}^2. If $u \in W^{1,2}(U)$, then $u \in L^\infty(U)$ with the estimate

$$\|u\|_{L^\infty(U)} \leq C\|u\|_{W^{1,2}(U)}$$

where C does not depend on u.

(b) Let U be a bounded, open set in \mathbb{R}^n with smooth boundary. Show that

$$\|Du\|_{L^2(U)}^2 \leq C\|u\|_{L^2(U)}\|D^2u\|_{L^2(U)}$$

for all $u \in H^1_0(U) \cap H^2(U)$ where C does not depend on u.

(2) Consider the following Dirichlet problem

$$-\Delta u + \mu u = f \quad \text{in } U$$

$$u = 0 \quad \text{on } \partial U$$

where μ is a given constant. U is a bounded, open subset of \mathbb{R}^n.

(a) Show the existence of a weak solution $u \in H^1_0(U)$ of the above problem for $\mu > 0$.

(b) Show the existence of a weak solution $u \in H^1_0(U)$ of the above problem for $\mu = 0$.

(c) Discuss the problem when $\mu < 0$.

(3) Consider the Poisson equation with Dirichlet boundary condition:

$$\begin{cases}
-\Delta u = f & \text{in } U \\
u = 0 & \text{on } \partial U
\end{cases}$$

where U is a bounded, open subset of \mathbb{R}^n and $f \in L^2(U)$. We know there exists a weak solution $u \in H^1_0(U)$. Prove that $u \in H^2_{\text{loc}}(U)$.