UCR

Department of Mathematics



Gerhard Gierz Publications


Technical Publications


Journal Articles

1. Bartnicki-Garcia, S., Bartnicki, D.D., Gierz, G. 0. Determinants of fungal cell wall morphology:  the vesicle supply center. Can. J. Botany. p.S372-S378. (Refereed)  

2. Gierz, G., Keimel, K. 1976. Topologische Darstellung von Verbanden. Math. Z. p.83-99. (Refereed)  

3. Gierz, G. 1978. Representation of spaces of compact operators and applications to the approximation property. Archiv der Mathematik. p.622-628. (Refereed)  

4. Gierz, G. 1982. Colimits of Continuous Lattices. J. of Pure and Applied Algebra. p.137-144. (Refereed)

5. Gierz, G. 1983. Injective Banach lattices with strong order units. Pacific J. of Math. p.297-305. (Refereed)  

6. Gierz, G., Stralka, A. 1984. The Zariski Topology for Distributive Lattices. Rocky Mountain Journal of Mathematics. p.195-217. (Refereed)  

7. Gierz, G., Stralka, A. 1985. Distributive lattices with sufficiently many chain intervals. Algebra Universalis. p.77-89. (Refereed)  

8. Gierz, G., Lawson, J., Stralka, A. 1985. Intrinsic Topologies on Semilattices of Finite Breadth. Semigroup Forum. p.1-17. (Refereed)  

9. Faigle, U., Gierz, G., Schrader, R. 1985. Algorithmic approaches to setup minimization. SIAM J. COMPUT. p.954-965. (Refereed)  

10. Gierz, G. 1986. On the Dunford-Pettis Property of Function Modules of Abstract L-Spaces. Pacific Journal of Mathematics. p.73-82. (Refereed)  

11. Gierz, G., Shekhtman, B. 1986. A Duality Principle for Rational Approximation. Pacific Journal of Mathematics. p.79-82. (Refereed)  

12. Gierz, G., Shekhtman, B. 1986. On Approximation by Rationals from a Hyperplane. Proceedings of the AMS. p.452-454. (Refereed)  

13. Gierz, G. 1987. Integral Representations of Linear Functionals on Function Modules. Rocky Mountain Journal of Mathematics. p.545-554. (Refereed)  

14. Gierz, G., Stralka, A. 1987. Sublattices of Euclidean Spaces. Semigroup Forum. p.303-315. (Refereed)  

15. Gierz, G. 1987. A Compact Semilattice on the Hilbert Cube with No Interval Homomorphism. Proc. of AMS. p.592-594. (Refereed)  

16. Gierz, G., Shekhtman, B. 1988. On Spaces with Large Chebyshev Subspaces. J. of Approx. Theory. p.155-161. (Refereed)  

17. Gierz, G., Shekhtman, B. 1988. On Duality in Rational Approximation. Rocky Mountain Journal of Mathematics. p.1-7. (Refereed)  

18. Gierz, G., Stralka, A. 1989. Modular lattices on the 3-cell are distributive. Algebra Universalis. p.1-6. (Refereed)  

19. Bartnicki-Garcia, S., Hergert, F., Gierz, G. 1989. Computer simulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth. Protoplasma. p.46-57. (Refereed)  

20. Gierz, G., Stralka, A. 1990. The Zariski Topology and Essential Extensions of Semilattices. J. of Pure & Appl. Algebra. p.135-148. (Refereed) 

21. Gierz, G., Hergert, F. 1991. The bandwidth problem for distributive lattices of breadth 3. Discrete Mathematics. p.157-177. (Refereed)  

22. Gierz, G., Stralka, A. 1991. Connected, Full-Valued Distributive Lattices of Finite Breadth. Houston Journal of Mathematics. p.351-365. (Refereed)  

23. Gierz, G., Romanowska, A. 1991. Duality for Distributive Bisemilattices. J. Australian Math. Soc. p.247-275. (Refereed)  

24. Gierz, G., Stralka, A. 1992. A characterization of full sublattices of finite dimensional Euclidean space. Topology and its Applications. p.59-72. (Refereed)  

25. Gierz, G., Shekhtman, B. 1992. On Archimedean Ordered Vector Spaces and a Characterization of Simplices. Proc. of the AMS. p.369-375. (Refereed)  

26. Gierz, G. 1992. Levels Sets in Finite Distributive Lattices of Breadth 3. Discrete Mathematics . p.51-63. (Refereed)  

27. Gierz, G., Stralka, A. 1994. On the Existence of Tangent Hyperplanes to Full Sublattices of Euclidean Space. Rocky Mountain Journal of Mathematics. p.1379-1403. (Refereed)  

28. Gierz, G., Stralka, A. 1995. Homogenous Sublattices of Euclidean Space. Houston J. Of Math. p.297-318. (Refereed)  

29. Bartnicki-Garcia, S., Bartnicki, D., Gierz, G., Lopez-Franco, R., Bracker, C. 1995. Evidence That Spitzenkorper Behavior Determines the Shape of a Fungal Hypha:  A Test of the Hyphoid Model. Experimental Mycology. p.153-159. (Refereed)  

30. Gierz, G. 1996. Morita Equivalence of Quasi-Primal Algebras and Sheaves. Algebra Universalis. p.570-576. (Refereed)  

31. Reynaga-Pena, C., Gierz, G., Bartnicki-Garcia, S. 1997. Analysis of the role of the Spitzenkorper in fungal morphogenesis by computer simulation of apical branching in Aspergillus niger. Proc. Natl. Acad. Sci. USA. p.9096-9101. (Refereed)  

32. Riquelme, M., Reynaga-Pena, C., Bartnicki-Garcia, S. 1998. What Determines Growth Direction in Fungal Hyphae?. Fungal Genetics and Biology. p.101-109. (Refereed)  

33. Gierz, G., Stralka, A. 2000. Quotients of Full Sublattices of Euclidean Space. Houston J. of Math. p.29-53. (Refereed)  

34. Bartnicki-Garcia, S., Bracker, C., Gierz, G., Lopez-Franco, R., Lu, H. 2000. Mapping the Growth of Fungal Hyphae: Orthogonal Cell Wall Expansion during Tip Growth and the Role of Turgor. Biophysical Journal. p.2382-2390. (Refereed)  

35. Gierz, G., Bartnicki-Garcia, S. 2001. A Three-Dimensional Model of Fungal Morphogenesis based on the Vesicle Supply Center concept. J. Theoretical Biology. p.151-164. (Refereed)  

Conference and Symposia Proceedings

1. Gierz, G., Shekhtman, B. 1986. "Non-linear Approximation from a Hyperplane: Rational Approximation versus Product Approximation". Approximation Theory V, Academic Press. p.347-350. (Refereed, )  

Book Chapters

1. Gierz, G. 1990. "The Normal Completion of the Lattice of Continuous Functions". The Dilworth Theorems:  Selected Papers of Robert P. Dilworth. Editors: Bogart, Freese and Kung. Birkhauser Verlag. p.445-449. (Refereed)  

2. Bartnicki-Garcia, S., Hergert, F., Gierz, G. 1990. "A Novel Computer Model for Generating Cell Shape:  Application to Fungal Morphogenesis". Biochemistry of Cell Walls and Membranes. Editors: Kuhn et al., ed.. Springer Verlag. Heidelberg. p.43-60. (Refereed)  

3. Bartnicki-Garcia, S., Gierz, G. 1991. "Predicting the Molecular Basis of Mycelial-Yeast Dimorphism with a New Mathemtical Model of Fungal Morphogenesis". More Gene Manipulations in Fungi. Editors: J.W. Bennett, L.L. Lasure. Academic Press. San Diego. p.27-48. (Refereed)  

4. Bartnicki-Garcia, S., Gierz, G. 1993. "Mathemtical Analysis of the Cellular Basis of Fungal Dimorphism". Dimorphic Fungi in Biology and Medicine. Editors: H. Vanden Bossche, F.C. Odds, D. Kerridge. Plenum Press. New York. p.133-144. (Refereed)  


More Information

General Campus Information

University of California, Riverside
900 University Ave.
Riverside, CA 92521
Tel: (951) 827-1012

Career OpportunitiesUCR Libraries
Campus StatusMaps and Directions

Department Information

Department of Mathematics
Surge 202

Tel: (951) 827-3113
Fax: (951) 827-7314

Office Hours: 9:00 a.m. - 11:45 a.m. & 1:00 p.m. - 4:00 p.m.

Related Links

Footer