Department of Mathematics

Wee Liang Gan Publications

Technical Publications

Journal Articles

1. Gan, W., Ginzburg, V. 2002. Quantization of Slodowy Slices. International Math Research Notices. p.243-255. (Refereed)  

2. Gan, W. 2003. Koszul Duality for Dioperads. Math Research Letters. p.109-124. (Refereed)  

3. Gan, W., Ginzburg, V. 2004. Hamiltonian Reduction and Maurer-Cartan Equations. Moscow Math J. p.719-727. (Refereed)  

4. Gan, W., Ginzburg, V. 2005. Deformed preprojective algebras and symplectic reflection algebras for wreath products. J Algebra. p.350-363. (Refereed)  

5. Etingof, P., Gan, W., Ginzburg, V. 2005. Continuous Hecke Algebras. Transformation Groups. p.423-447. (Refereed)  

6. Gan, W. 2005. On a Theorem of Conant-Vogtmann. Math Research Letters. p.749-757. (Refereed)  

7. Gan, W., Ginzburg, V. 2006. Almost-Commuting Variety, D-Modules, and Cherednik Algebras. International Math Research Papers. p.1-54. (Refereed)  

8. Gan, W. 2006. Reflection functors and symplectic reflection algebras for wreath products. Advances in Math. p.599-630. (Refereed)  

9. Etingof, P., Gan, W., Oblomkov, A. 2006. Generalized Double Affine Hecke Algebras of Higher Rank. Crelle's J. p.177-201. (Refereed)  

10. Gan, W. 2007. Chevalley Restriction Theorem for the Cyclic Quiver. Manuscripta Math. p.131-134. 4p. (Refereed)   

11. Gan, W., Khare, A. 2007. Quantized symplectic oscillator algebras of rank one. Journal of Algebra. p.671-707. (Refereed) 

(In Press)

1. Etingof, P., Gan, W., Ginzburg, V., Oblomkov, A. Harish-Chandra Homomorphisms and Symplectic Reflection Algebras for Wreath-Products. "Publ. Math. de IHES". (Accepted 01/01/2007. 50 manuscript pages.) (Refereed)  


More Information

General Campus Information

University of California, Riverside
900 University Ave.
Riverside, CA 92521
Tel: (951) 827-1012

Career OpportunitiesUCR Libraries
Campus StatusMaps and Directions

Department Information

Department of Mathematics
Surge 202

Tel: (951) 827-3113
Fax: (951) 827-7314

Office Hours: 9:00 a.m. - 11:45 a.m. & 1:00 p.m. - 4:00 p.m.

Related Links