Suppose that we have a graph G where each vertex has d edges and there are no cycles of length 4 or less. It is not hard to see that G has at least d^2+1 vertices. The question is: can G have exactly d^2+1 vertices? As it turns out, this is only possible if d is one of the following numbers: 1, 2, 3, 7 or 57!

We'll see how this (surprisingly?) follows from the Spectral Theorem for symmetric matrices.