“Fitting a Smooth Function to Data”

Abstract: Given an arbitrary set \(E \) in \(\mathbb{R}^n \), and a function \(f: E \rightarrow \mathbb{R} \), how can we tell whether there exists \(F \) in \(C^m(\mathbb{R}^n) \) such that \(F = f \) (or \(F \) is very near \(f \)) on \(E \)? How small can we take the \(C^m \) norm of \(F \)? What can be said about the Taylor polynomial of \(F \) at a given point? Can we take \(F \) to depend linearly on \(f \)? If \(E \) is finite, can we compute an essentially optimal \(F \)? How many operations does it take? Some of the results are joint work with Bo'az Klartag.

Monday, December 5, 2005, 4:30pm
Location?

(ask if light refreshments will be served before or after in 284)